APPENDIX

In this section, we consider a simple quadratic function

1 d 2 1 T
f(z)= 3 Z)\ixi =52 Ax (1)
Vf(z) = Az (2)
V2f(z) = A (3)

The results can be generalized to asymptotic analysis of other convex functions based on the following
proposition

Proposition 0.1. Let (fx) be the sequence defined by the recursion fri1 = afy + bfE, for k =1,2,.... If
a<land fi1 < 1_7“, then (fi) converges to 0 at asymptotic rate a.

Proof. Since (fy) is strictly decreasing, it is easy to show that , with a < 1,
o If f1 > , (fr) diverges.
o T i =58 () = 55

b
o If fi < 152, (fr) converges to 0.
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Consider the case when (f;) converges to 0. There must exist kg such that fi < @, for all & > k.
Suppose that f; = al_Ta, where 0 < a < 1. Let us define a sequence (hy) as hy, = fla%fk Then for k > ko

1 I a(l—a) 1 @)

hy = < =
T faR f frab=1 b aak—2

The recursion for (hy) is given by

hy =1,
hit1 = hi + a(l — a)ab=2h32.
Notice that (hy) is also strictly increasing, and the following inequalities hold
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From (4), the sequence defined by the RHS must converge to a constant m Consequently, (hy) is
hk.o
upper-bounded by this sequence and also converges. Finally, we obtain lim hy = lim %5—2 < 00, yielding the

asymptotic convergence rate of (fx) to 0 is a. O



1 Proof of convergence rate for fixed step size gradient descent

From the update 2+ = 2(k) — oV f(2()) = 2 — aAz(*) | we have

%(x(k) — aAz)T AP — aAz®)) = %(x(k))T(I — aM)A(T — aA)z®)

f(x(k-i-l)) -
_ %(A1/2x(k))T(I _ aA)2(A1/2gc(k))
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By setting oo = we obtain
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Fla®+D) < (t;iz) Fa®),

2 Proof of convergence rate for fixed step size momentum method

From the update 2+ = 2 — oV f(2*)) 4 (2®) — 2(=1) we have
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Since limg o0 |;|)(M)”’“ =11, the spectral radius p(M) = max;{|\;(M)|} determines the convergence rate of
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7 . We define the permutation 7 such that

. 25 —1if j <d,
(1) =19, :
27 — 2d otherwise.

the series (fx). Recall that M = [

Then
My 0 ... 0
0 My, ... 0
M ~ P,MPF = .
0 0 ... My

is a block diagonal matrix with eigenvalues are simply those of My, Ms,...,My. For any j = 1,...,d,
the eigenvalues of M; are the root of the characteristic polynomial 02 — (1 + 3 — a);)o + . Since a =

(f \/E) the two complex roots are given by

(xtm) 8= (B

O—j17j2:;(1+ﬂ_0¢)\ji\/(1+ﬁ—04)\j)2—4ﬁ).

It follows that the magnitudes of all eigenvalues are equal to /3. Thus p(M) = /3.

1Gelfand’s formula.



3 Proof of convergence rate for adaptive step size gradient descent
From (1), we have
FOH) = @) - 0T 7@ @) T F@) + a2V 2 )£ 0)

Vi) viE®)

V@) TV [P @y Ve obtain

Substituting oy =
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The last inequality uses Kantorovich Inequality

1 (zw)T Azxw))?
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4 Proof of convergence rate for adaptive step size momentum method

Proof. For asymptotic analysis, we consider the region near the optimum, in which the objective function

can be well-approximated by a quadratic. We know that fixing a(®) to /\li X yields

oo, = Ve v
27 VE+1 2’

On the other hand, choosing adaptive step size

a] _ [ VIV IV —AaTV2 VT [ VTV
Bl ~ | -ALTVEIVE  ALTVAfAz ~ALTVf

minimizes the quadratic with respect to a, 3. That means the resulting §*) satisfies
. VE—1
i, < v, < Zmz I,

| < Vil

Hence, each iteration of adaptive schedule decreases the distance at least as much as each iteration of fixed
step size scheme. The convergence rate therefore is upper-bounded by the one of fixed step size scheme inside

the quadratic region, which is g;i
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