APPENDIX

In this section, we consider a simple quadratic function

$$
\begin{align*}
& f(x)=\frac{1}{2} \sum_{i=1}^{d} \lambda_{i} x_{i}^{2}=\frac{1}{2} x^{T} \Lambda x \tag{1}\\
& \nabla f(x)=\Lambda x \tag{2}\\
& \nabla^{2} f(x)=\Lambda \tag{3}
\end{align*}
$$

The results can be generalized to asymptotic analysis of other convex functions based on the following proposition

Proposition 0.1. Let $\left(f_{k}\right)$ be the sequence defined by the recursion $f_{k+1}=a f_{k}+b f_{k}^{2}$, for $k=1,2, \ldots$. If $a<1$ and $f_{1}<\frac{1-a}{b}$, then $\left(f_{k}\right)$ converges to 0 at asymptotic rate a.
Proof. Since $\left(f_{k}\right)$ is strictly decreasing, it is easy to show that, with $a<1$,

- If $f_{1}>\frac{1-a}{b},\left(f_{k}\right)$ diverges.
- If $f_{1}=\frac{1-a}{b},\left(f_{k}\right)=\frac{1-a}{b}$.
- If $f_{1}<\frac{1-a}{b},\left(f_{k}\right)$ converges to 0 .

Consider the case when $\left(f_{k}\right)$ converges to 0 . There must exist k_{0} such that $f_{k}<\frac{a(1-a)}{b}$, for all $k \geq k_{0}$. Suppose that $f_{1}=\alpha \frac{1-a}{b}$, where $0<\alpha<1$. Let us define a sequence $\left(h_{k}\right)$ as $h_{k}=\frac{1}{f_{1} a^{k-1}} f_{k}$. Then for $k \geq k_{0}$

$$
\begin{equation*}
h_{k}=\frac{1}{f_{1} a^{k-1}} f_{k}<\frac{1}{f_{1} a^{k-1}} \frac{a(1-a)}{b}=\frac{1}{\alpha a^{k-2}} \tag{4}
\end{equation*}
$$

The recursion for $\left(h_{k}\right)$ is given by

$$
\left\{\begin{array}{l}
h_{1}=1 \\
h_{k+1}=h_{k}+\alpha(1-a) a^{k-2} h_{k}^{2}
\end{array}\right.
$$

Notice that $\left(h_{k}\right)$ is also strictly increasing, and the following inequalities hold

$$
\begin{aligned}
& \Rightarrow \quad \alpha(1-a) a^{k-2}=\frac{h_{k+1}-h_{k}}{h_{k}^{2}}>\frac{h_{k+1}-h_{k}}{h_{k+1} h_{k}}=\frac{1}{h_{k}}-\frac{1}{h_{k+1}} \\
& \Rightarrow \quad \sum_{i=k_{0}}^{k-1} \alpha(1-a) a^{i-2} \\
& \Rightarrow \quad>\sum_{i=k_{0}}^{k-1}\left(\frac{1}{h_{i}}-\frac{1}{h_{i+1}}\right) \\
& \Rightarrow \quad \alpha(1-a) a^{k_{0}-2} \sum_{j=0}^{k-1-k_{0}} a^{j}
\end{aligned}>\frac{1}{h_{k_{0}}}-\frac{1}{h_{k}}, ~<(1-a) a^{k_{0}-2} \frac{1-a^{k-k_{0}}}{1-a} \quad>\frac{1}{h_{k_{0}}}-\frac{1}{h_{k}} .
$$

From (4), the sequence defined by the RHS must converge to a constant $\frac{1}{\frac{1}{h_{k_{0}}}-\alpha a^{k_{0}-2}}$. Consequently, $\left(h_{k}\right)$ is upper-bounded by this sequence and also converges. Finally, we obtain $\lim h_{k}=\lim \frac{a}{f_{1}} \frac{f_{k}}{a^{k}}<\infty$, yielding the asymptotic convergence rate of $\left(f_{k}\right)$ to 0 is a.

1 Proof of convergence rate for fixed step size gradient descent

From the update $x^{(k+1)}=x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)=x^{(k)}-\alpha \Lambda x^{(k)}$, we have

$$
\begin{aligned}
f\left(x^{(k+1)}\right) & =\frac{1}{2}\left(x^{(k)}-\alpha \Lambda x^{(k)}\right)^{T} \Lambda\left(x^{(k)}-\alpha \Lambda x^{(k)}\right)=\frac{1}{2}\left(x^{(k)}\right)^{T}(I-\alpha \Lambda) \Lambda(I-\alpha \Lambda) x^{(k)} \\
& =\frac{1}{2}\left(\Lambda^{1 / 2} x^{(k)}\right)^{T}(I-\alpha \Lambda)^{2}\left(\Lambda^{1 / 2} x^{(k)}\right) \\
& \leq \frac{1}{2}\|I-\alpha \Lambda\|_{2}^{2} \cdot\left\|\Lambda^{1 / 2} x^{(k)}\right\|_{2}^{2}=\max _{i}\left(1-\alpha \lambda_{i}\right)^{2} \cdot f\left(x^{(k)}\right)
\end{aligned}
$$

By setting $\alpha=\frac{2}{\lambda_{1}+\lambda_{d}}$, we obtain

$$
f\left(x^{(k+1)}\right) \leq\left(\frac{\lambda_{1}-\lambda_{d}}{\lambda_{1}+\lambda_{d}}\right)^{2} f\left(x^{(k)}\right) .
$$

2 Proof of convergence rate for fixed step size momentum method

From the update $x^{(k+1)}=x^{(k)}-\alpha \nabla f\left(x^{(k)}\right)+\beta\left(x^{(k)}-x^{(k-1)}\right)$, we have

$$
\begin{aligned}
y^{(k+1)} & =\left[\begin{array}{c}
x^{(k+1)} \\
x^{(k)}
\end{array}\right]=\left[\begin{array}{cc}
(1+\beta) I-\alpha \Lambda & -\beta I \\
I & 0
\end{array}\right]\left[\begin{array}{c}
x^{(k)} \\
x^{(k-1)}
\end{array}\right]=M y^{(k)} \\
f_{k+1} & =f\left(x^{(k+1)}\right)+f\left(x^{(k)}\right)=\frac{1}{2} y^{(k+1)^{T}}\left[\begin{array}{cc}
\Lambda & 0 \\
0 & \Lambda
\end{array}\right] y^{(k+1)}=\frac{1}{2} y^{(k)^{T}} M^{T} \hat{\Lambda} M y^{(k)}=\ldots \\
& =\frac{1}{2} y^{(1)^{T}} M^{k^{T}} \hat{\Lambda} M^{k} y^{(1)}=\frac{1}{2}\left(\hat{\Lambda}^{1 / 2} y^{(1)}\right)^{T}\left(\hat{\Lambda}^{-1 / 2} M^{k} \hat{\Lambda} M^{k} \hat{\Lambda}^{-1 / 2}\right)\left(\hat{\Lambda}^{1 / 2} y^{(1)}\right) \\
& =\frac{1}{2}\left(\hat{\Lambda}^{1 / 2} y^{(1)}\right)^{T}\left(\left(\hat{\Lambda}^{1 / 2} M^{k} \hat{\Lambda}^{-1 / 2}\right)^{T}\left(\hat{\Lambda}^{1 / 2} M^{k} \hat{\Lambda}^{-1 / 2}\right)\right)\left(\hat{\Lambda}^{1 / 2} y^{(1)}\right) \\
& \leq \frac{1}{2}\left\|\hat{\Lambda}^{1 / 2} M^{k} \hat{\Lambda}^{-1 / 2}\right\|_{2}^{2}\left\|\hat{\Lambda}^{1 / 2} y^{(1)}\right\|_{2}^{2}=\left\|\hat{\Lambda}^{1 / 2} M^{k} \hat{\Lambda}^{-1 / 2}\right\|_{2}^{2} f_{1} \\
& \leq\left(\left\|\hat{\Lambda}^{1 / 2}\right\|_{2}\left\|M^{k}\right\|_{2}\left\|\hat{\Lambda}^{-1 / 2}\right\|_{2}\right) f_{1}=\left\|M^{k}\right\|_{2}^{2} \frac{\lambda_{1}^{2}}{\lambda_{d}^{2}} f_{1}
\end{aligned}
$$

Since $\lim _{k \rightarrow \infty} \frac{\left\|M^{k}\right\|_{2}^{2}}{\rho(M)^{k}}=1^{1}$, the spectral radius $\rho(M)=\max _{j}\left\{\left|\lambda_{j}(M)\right|\right\}$ determines the convergence rate of the series $\left(f_{k}\right)$. Recall that $M=\left[\begin{array}{cc}(1+\beta) I-\alpha \Lambda & -\beta I \\ I & 0\end{array}\right]$. We define the permutation π such that

$$
\pi(j)=\left\{\begin{array}{l}
2 j-1 \text { if } j \leq d, \\
2 j-2 d \text { otherwise }
\end{array}\right.
$$

Then

$$
M \sim P_{\pi} M P_{\pi}^{T}=\left[\begin{array}{cccc}
M_{1} & 0 & \ldots & 0 \\
0 & M_{2} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & M_{d}
\end{array}\right]
$$

is a block diagonal matrix with eigenvalues are simply those of $M_{1}, M_{2}, \ldots, M_{d}$. For any $j=1, \ldots, d$, the eigenvalues of M_{j} are the root of the characteristic polynomial $\sigma^{2}-\left(1+\beta-\alpha \lambda_{j}\right) \sigma+\beta$. Since $\alpha=$ $\left(\frac{2}{\sqrt{\lambda_{1}}+\sqrt{\lambda_{d}}}\right)^{2}, \beta=\left(\frac{\sqrt{\lambda_{1}}-\sqrt{\lambda_{d}}}{\sqrt{\lambda_{1}}+\sqrt{\lambda_{d}}}\right)^{2}$, the two complex roots are given by

$$
\sigma_{j_{1}, j_{2}}=\frac{1}{2}\left(1+\beta-\alpha \lambda_{j} \pm \sqrt{\left(1+\beta-\alpha \lambda_{j}\right)^{2}-4 \beta}\right) .
$$

It follows that the magnitudes of all eigenvalues are equal to $\sqrt{\beta}$. Thus $\rho(M)=\sqrt{\beta}$.

[^0]
3 Proof of convergence rate for adaptive step size gradient descent

From (1), we have

$$
f\left(x^{(k+1)}\right)=f\left(x^{(k)}\right)-\alpha_{k} \nabla f\left(x^{(k)}\right)^{T} \nabla f\left(x^{(k)}\right)+\frac{1}{2} \alpha_{k}^{2} \nabla f\left(x^{(k)}\right)^{T} \nabla^{2} f\left(x^{(k)}\right) \nabla f\left(x^{(k)}\right) .
$$

Substituting $\alpha_{k}=\frac{\nabla f\left(x^{(k)}\right)^{T} \nabla f\left(x^{(k)}\right)}{\nabla f\left(x^{(k)}\right)^{T} \nabla^{2} f\left(x^{(k)}\right) \nabla f\left(x^{(k)}\right)}$, we obtain

$$
\begin{aligned}
f\left(x^{(k+1)}\right) & =f\left(x^{(k)}\right)-\frac{1}{2} \frac{\left(\nabla f\left(x^{(k)}\right)^{T} \nabla f\left(x^{(k)}\right)\right)^{2}}{\nabla f\left(x^{(k)}\right)^{T} \nabla^{2} f\left(x^{(k)}\right) \nabla f\left(x^{(k)}\right)}=f\left(x^{(k)}\right)-\frac{1}{2} \frac{\left(x^{(k)^{T}} \Lambda^{2} x^{(k)}\right)^{2}}{x^{(k)^{T}} \Lambda^{3} x^{(k)}} \\
& =\left(1-\frac{\left(x^{\left.(k)^{T} \Lambda^{2} x^{(k)}\right)^{2}}\right.}{\left(x^{(k)^{T}} \Lambda^{3} x^{(k)}\right)\left(x^{\left.(k)^{T} \Lambda x^{(k)}\right)}\right) f\left(x^{(k)}\right)}\right. \\
& \leq\left(1-\frac{4 \lambda_{1} \lambda_{d}}{\left(\lambda_{1}+\lambda_{d}\right)^{2}}\right) f\left(x^{(k)}\right)=\left(\frac{\lambda_{1}-\lambda_{d}}{\lambda_{1}+\lambda_{d}}\right)^{2} f\left(x^{(k)}\right)
\end{aligned}
$$

The last inequality uses Kantorovich Inequality

$$
\frac{\left(y^{T} \Lambda^{2} y\right)^{2}}{\left(y \Lambda^{3} y\right)\left(y^{T} \Lambda y\right)} \geq \frac{4 \lambda_{1} \lambda_{d}}{\left(\lambda_{1}+\lambda_{d}\right)^{2}}
$$

4 Proof of convergence rate for adaptive step size momentum method

Proof. For asymptotic analysis, we consider the region near the optimum, in which the objective function can be well-approximated by a quadratic. We know that fixing $\alpha^{(k)}$ to $\frac{2}{\lambda_{1}+\lambda_{d}}$ yields

$$
\left\|y^{(k+1)}\right\|_{2} \leq \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\left\|y^{(k)}\right\|_{2}
$$

On the other hand, choosing adaptive step size

$$
\left[\begin{array}{c}
\hat{\alpha} \\
\hat{\beta}
\end{array}\right]=\left[\begin{array}{cc}
\nabla f^{T} \nabla^{2} f \nabla f & -\Delta x^{T} \nabla^{2} f \nabla f \\
-\Delta x^{T} \nabla^{2} f \nabla f & \Delta x^{T} \nabla^{2} f \Delta x
\end{array}\right]^{-1}\left[\begin{array}{c}
\nabla f^{T} \nabla f \\
-\Delta x^{T} \nabla f
\end{array}\right]
$$

minimizes the quadratic with respect to α, β. That means the resulting $\hat{y}^{(k)}$ satisfies

$$
\left\|\hat{y}^{(k+1)}\right\|_{2} \leq\left\|y^{(k+1)}\right\|_{2} \leq \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\left\|y^{(k)}\right\|_{2}
$$

Hence, each iteration of adaptive schedule decreases the distance at least as much as each iteration of fixed step size scheme. The convergence rate therefore is upper-bounded by the one of fixed step size scheme inside the quadratic region, which is $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$.

[^0]: ${ }^{1}$ Gelfand's formula.

