
APPENDIX
In this section, we consider a simple quadratic function

f(x) =
1

2

d∑
i=1

λix
2
i =

1

2
xTΛx (1)

∇f(x) = Λx (2)

∇2f(x) = Λ (3)

The results can be generalized to asymptotic analysis of other convex functions based on the following
proposition

Proposition 0.1. Let (fk) be the sequence defined by the recursion fk+1 = afk + bf2k , for k = 1, 2, . . .. If
a < 1 and f1 < 1−a

b , then (fk) converges to 0 at asymptotic rate a.

Proof. Since (fk) is strictly decreasing, it is easy to show that , with a < 1,

• If f1 > 1−a
b , (fk) diverges.

• If f1 = 1−a
b , (fk) = 1−a

b .

• If f1 < 1−a
b , (fk) converges to 0.

Consider the case when (fk) converges to 0. There must exist k0 such that fk <
a(1−a)

b , for all k ≥ k0.
Suppose that f1 = α 1−a

b , where 0 < α < 1. Let us define a sequence (hk) as hk = 1
f1ak−1 fk. Then for k ≥ k0

hk =
1

f1ak−1
fk <

1

f1ak−1
a(1− a)

b
=

1

αak−2
(4)

The recursion for (hk) is given by {
h1 = 1,

hk+1 = hk + α(1− a)ak−2h2k.

Notice that (hk) is also strictly increasing, and the following inequalities hold

⇒ α(1− a)ak−2 =
hk+1 − hk

h2k
>
hk+1 − hk
hk+1hk

=
1

hk
− 1

hk+1

⇒
k−1∑
i=k0

α(1− a)ai−2 >

k−1∑
i=k0

(
1

hi
− 1

hi+1

)

⇒ α(1− a)ak0−2
k−1−k0∑
j=0

aj >
1

hk0
− 1

hk

⇒ α(1− a)ak0−2
1− ak−k0

1− a
>

1

hk0
− 1

hk

⇒ 1

hk
>

1

hk0
− αak0−2(1− ak−k0)

⇒ hk <
1(

1
hk0
− αak0−2

)
+ αak−2

From (4), the sequence defined by the RHS must converge to a constant 1
1

hk0
−αak0−2 . Consequently, (hk) is

upper-bounded by this sequence and also converges. Finally, we obtain limhk = lim a
f1

fk
ak
<∞, yielding the

asymptotic convergence rate of (fk) to 0 is a.
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1 Proof of convergence rate for fixed step size gradient descent
From the update x(k+1) = x(k) − α∇f(x(k)) = x(k) − αΛx(k), we have

f(x(k+1)) =
1

2
(x(k) − αΛx(k))TΛ(x(k) − αΛx(k)) =

1

2
(x(k))T (I − αΛ)Λ(I − αΛ)x(k)

=
1

2
(Λ1/2x(k))T (I − αΛ)2(Λ1/2x(k))

≤ 1

2
‖I − αΛ‖22 .

∥∥∥Λ1/2x(k)
∥∥∥2
2

= max
i

(1− αλi)2.f(x(k))

By setting α = 2
λ1+λd

, we obtain

f(x(k+1)) ≤

(
λ1 − λd
λ1 + λd

)2

f(x(k)).

2 Proof of convergence rate for fixed step size momentum method
From the update x(k+1) = x(k) − α∇f(x(k)) + β(x(k) − x(k−1)), we have

y(k+1) =

[
x(k+1)

x(k)

]
=

[
(1 + β)I − αΛ −βI

I 0

] [
x(k)

x(k−1)

]
= My(k)

fk+1 = f(x(k+1)) + f(x(k)) =
1

2
y(k+1)T

[
Λ 0
0 Λ

]
y(k+1) =

1

2
y(k)

T
MT Λ̂My(k) = . . .

=
1

2
y(1)

T
MkT Λ̂Mky(1) =

1

2
(Λ̂1/2y(1))T

(
Λ̂−1/2MkT Λ̂MkΛ̂−1/2

)
(Λ̂1/2y(1))

=
1

2
(Λ̂1/2y(1))T

(
(Λ̂1/2MkΛ̂−1/2)T (Λ̂1/2MkΛ̂−1/2)

)
(Λ̂1/2y(1))

≤ 1

2

∥∥∥Λ̂1/2MkΛ̂−1/2
∥∥∥2
2

∥∥∥Λ̂1/2y(1)
∥∥∥2
2

=
∥∥∥Λ̂1/2MkΛ̂−1/2

∥∥∥2
2
f1

≤
( ∥∥∥Λ̂1/2

∥∥∥
2

∥∥Mk
∥∥
2

∥∥∥Λ̂−1/2
∥∥∥
2

)
f1 =

∥∥Mk
∥∥2
2

λ21
λ2d
f1

Since limk→∞
‖Mk‖2

2

ρ(M)k
= 1 1, the spectral radius ρ(M) = maxj{|λj(M)|} determines the convergence rate of

the series (fk). Recall that M =

[
(1 + β)I − αΛ −βI

I 0

]
. We define the permutation π such that

π(j) =

{
2j − 1 if j ≤ d,
2j − 2d otherwise.

Then

M ∼ PπMPTπ =


M1 0 . . . 0
0 M2 . . . 0
...

. . .
...

0 0 . . . Md


is a block diagonal matrix with eigenvalues are simply those of M1,M2, . . . ,Md. For any j = 1, . . . , d,
the eigenvalues of Mj are the root of the characteristic polynomial σ2 − (1 + β − αλj)σ + β. Since α =(

2√
λ1+
√
λd

)2
, β =

(√
λ1−
√
λd√

λ1+
√
λd

)2, the two complex roots are given by

σj1,j2 =
1

2

(
1 + β − αλj ±

√
(1 + β − αλj)2 − 4β

)
.

It follows that the magnitudes of all eigenvalues are equal to
√
β. Thus ρ(M) =

√
β.

1Gelfand’s formula.
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3 Proof of convergence rate for adaptive step size gradient descent
From (1), we have

f(x(k+1)) = f(x(k))− αk∇f(x(k))
T
∇f(x(k)) +

1

2
α2
k∇f(x(k))

T
∇2f(x(k))∇f(x(k)).

Substituting αk = ∇f(x(k))
T∇f(x(k))

∇f(x(k))T∇2f(x(k))∇f(x(k))
, we obtain

f(x(k+1)) = f(x(k))− 1

2

(
∇f(x(k))

T∇f(x(k))

)2

∇f(x(k))
T∇2f(x(k))∇f(x(k))

= f(x(k))− 1

2

(
x(k)

T
Λ2x(k)

)2
x(k)

T
Λ3x(k)

=

(
1−

(
x(k)

T
Λ2x(k)

)2(
x(k)

T
Λ3x(k)

)(
x(k)

T
Λx(k)

))f(x(k))

≤

(
1− 4λ1λd

(λ1 + λd)2

)
f(x(k)) =

(
λ1 − λd
λ1 + λd

)2

f(x(k))

The last inequality uses Kantorovich Inequality(
yTΛ2y

)2(
yΛ3y

)(
yTΛy

) ≥ 4λ1λd
(λ1 + λd)2

.

4 Proof of convergence rate for adaptive step size momentummethod
Proof. For asymptotic analysis, we consider the region near the optimum, in which the objective function
can be well-approximated by a quadratic. We know that fixing α(k) to 2

λ1+λd
yields

∥∥∥y(k+1)
∥∥∥
2
≤
√
κ− 1√
κ+ 1

∥∥∥y(k)∥∥∥
2
.

On the other hand, choosing adaptive step size[
α̂

β̂

]
=

[
∇fT∇2f∇f −∆xT∇2f∇f
−∆xT∇2f∇f ∆xT∇2f∆x

]−1 [ ∇fT∇f
−∆xT∇f

]
minimizes the quadratic with respect to α, β. That means the resulting ŷ(k) satisfies∥∥∥ŷ(k+1)

∥∥∥
2
≤
∥∥∥y(k+1)

∥∥∥
2
≤
√
κ− 1√
κ+ 1

∥∥∥y(k)∥∥∥
2
.

Hence, each iteration of adaptive schedule decreases the distance at least as much as each iteration of fixed
step size scheme. The convergence rate therefore is upper-bounded by the one of fixed step size scheme inside
the quadratic region, which is

√
κ−1√
κ+1

.
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